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First, | will try to establish the relationship between the problem of
describing the associated Lie algebra for right-angled Coxeter groups and
toric topology. The primary focus of the work was to provide an explicit
description of the 2-restricted version of the associated Lie algebra for
these groups.

To achieve this, we will introduce the 2-restricted analogue of lower central
series, briefly describe the properties of the associated algebra - the
2-restricted Lie algebra. A key result we will use is Quillen's theorem. This
theorem connects the universal enveloping algebra of a 2-restricted Lie
algebra with the graded ring of the group ring.
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The theory we develop will be applied to demonstrate the isomorphism
between the 2-restricted associated Lie algebra of a Coxeter group and the
2-graph Lie algebra:

L = FLEIUC) /vyl = 0. (i} e i v = 0,vi e KO,

As a consequence of this isomorphism, for flag complexes K, we get a
connection between the fundamental group of the polyhedral power of a
real infinite-dimensional projective space and the Pontryagin algebra of the
polyhedral power of a complex infinite-dimensional projective space:

U(gr! w1 (RPPYX)) = H (QCP®Y; Z,).
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Objects of study

Let K be a simplicial complex on vertex set [m]| = {1,..., m}. For any
sequence of CW-pairs (X, A) = ((X1,A1), ..., (Xm,Am)), consider the
polyhedral product:

X, A% = Jx,a =] (Hx,- x HA,-) .

leK le \iel i¢l
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Objects of study

Let K be a simplicial complex on vertex set [m]| = {1,..., m}. For any

sequence of CW-pairs (X, A) = ((X1,A1), ..., (Xm,Am)), consider the
polyhedral product:

X, A% = Jx,a =] (Hx,- x HA,-) .

leK le \iel i¢l

The most important examples for us are:
o Zi = (D2, 51)’C — moment-angle complexes
o Ri = (DY, SX — real moment-angle complexes
o L = (R, Z)* = Uk (R, Z)
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Let G be a group. Central series on G is a sequence of subgroups
G = {Gk}k>1 such that:

QG.=6G

Q Gry1 < Gk

© (Gk,G1) < Gy
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Objects of study

Let G be a group. Central series on G is a sequence of subgroups
G = {Gk}k>1 such that:

Q@ Gi=¢G
Q Git1 < Gk
Q (9x,G1) < Gii

Theorem

The bracket defined as follows

[Z xiGit+1, Z ¥iGi+1] = Z(Xi, ¥j)Gitj+1
i J

]

defines the structure of a graded Lie ring on grG = P G;/Gi11 -

Lower central series is defined recursively: v,(G) = (74-1(G), G).
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Parallel of the real and complex case

For real and complex cases of moment-angle complexes two parallel
(homology and homotopy) theories rise. One of the question on the way of
understanding the connection is calculating the Lie algebra associated to
the Coxeter groups.

Here and below assume K is flag.
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Parallel of the real and complex case
Case of Zx [Grb+15]

Proposition

There is a homotopy fibration:

Zie — (CP®* - (CcP™)™,
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Parallel of the real and complex case
Case of Zx [Grb+15]

Proposition

There is a homotopy fibration:

Zie — (CP®* - (CcP™)™,

Considering loop homology, if k is field or Z, we obtain a split exact
sequence of (noncommutative) algebras:

1 — Ho(QZi; k) — Hye(QCP®)* k) — A[m] — 1.
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Parallel of the real and complex case
Case of Zx [Grb+15]

Proposition

There is a homotopy fibration:

Zie — (CP®* - (CcP™)™,

Considering loop homology, if k is field or Z, we obtain a split exact
sequence of (noncommutative) algebras:

1 — Ho(QZi; k) — Hye(QCP®)* k) — A[m] — 1.

If k is a field, then there is an explicit description:

Ha(CP™)* k) = Extypie) (k, k) =

N T<u1,...,Um>
~ (v = 0,Yi; juj + uju; = 0, for {i, j} € K)
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Parallel of the real and complex case
Case of Rx [PV16]

Proposition

There is a homotopy fibration:
Rk — (RP®)X — (RP*)™,

moreover, for a flag K all three spaces are aspherical.
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Parallel of the real and complex case
Case of Rx [PV16]

Proposition

There is a homotopy fibration:
Rk — (RP®)X — (RP*)™,

moreover, for a flag K all three spaces are aspherical.

All topological information is contained in the fundamental groups of
spaces. Passing to fundamental groups, we obtain the exact sequence:

1 - RCx’ — RCx —>Z§Bm—> 1,

where RCxc = F(K0)/{v? =1 for i € [m]; viv; = vjv; for i,j € K).
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Formulation of the problem
Lk

General question

It is natural to ask the following problem: is it possible to construct a

graded algebra from the group RCx, that would contain homotopy
information about Z.
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Formulation of the problem
Lk

General question

It is natural to ask the following problem: is it possible to construct a

graded algebra from the group RCx, that would contain homotopy
information about Z.

Here comes the second motivating parallel:

Proposition

There is a homotopy fibration:

Lic — (SH* - (sH™,

moreover, for a flag IC all three spaces are aspherical.
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Formulation of the problem
Lk

Proposition

There is a homotopy fibration:
Lx — (SH* = (sH™,

moreover, for a flag IC all three spaces are aspherical.
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Formulation of the problem
Lk

Proposition

There is a homotopy fibration:
Lx — (SH* = (sH™,

moreover, for a flag IC all three spaces are aspherical.

Considering fundamental groups, we obtain:
1> RAY —> RAx —» Z°™ - 1,
where RAc = F(K°)/{viv; = vjv; < i,j € K).
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Formulation of the problem
Lk

Proposition

There is a homotopy fibration:
Lx — (SH* = (sH™,

moreover, for a flag IC all three spaces are aspherical.

Considering fundamental groups, we obtain:
1> RAY —> RAx —» Z°™ - 1,

where RAc = F(K°)/{viv; = vjv; < i,j € K).

It is known that the Lie ring associated with the LCS of RAx has an

explicit description [DK92; Wad16] and is isomorphic to the Lie graph-ring:
FL(K?)

([vi,vi] = 0, for{i, j} € K)

gr(’y(RA;C)) >~ =
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We will call Lie graph-algebra over Z; the following:

L]C ®Z Zz = FLZz(ICO)/([V,', VJ] =0« i,j € IC)
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We will call Lie graph-algebra over Z; the following:

L]C ®Z Zg = FLZz(ICO)/([V,', VJ] =0« i,j € IC)

Proposition

The following natural map is epimorphic, but not monomorphic:

€RCx - L ®z Zy — grfy(RC;C)
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We will call Lie graph-algebra over Z; the following:

L}C ®Z Zz = FLZz(ICO)/([V,', VJ] =0« i,j € IC)

Proposition

The following natural map is epimorphic, but not monomorphic:

€RCx - L ®z Zy — grfy(RC;C)

Obstacle

If monomial element a € U(Lx ®z Zy) has degree n, then a? (as a
monomial element corresponding to a® from group) has degree 2n.
But for nonzero monomial element a € U(grv(RCx)) with degree n,
element corresponding to a® from group can has degree n + 1.
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p-restricted central series

Definition

Let {K;}i>1 be the central filtration. It is called Nj-series if Kf < Kpp.
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p-restricted central series

Definition

Let {K;}i>1 be the central filtration. It is called Nj-series if Kf < Kpp.

The construction of the minimal inclusion-wise Ny-series for the LCS was
introduced by H. Zassenhaus [Zas39].

Definition

For any central series {K;};>1 define the p-restricted central series
constructed from {Ki};>1 in the following way:

K,[,P] — H ( Km ) P

mpi=n,m>1,>0
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p-restricted central series

Proposition ([Laz54])

The constructed filtration {K,[,p ]} is an inclusion-minimal N,-series
containing {K;}i>1.
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p-restricted central series

Proposition ([Laz54])

The constructed filtration {K,[,p ]} is an inclusion-minimal N,-series
containing {K;}i>1.

Notice that for g € K,gp], the element gP € K,g’,;]. Hence, the operation
induced in the p-restricted Lie algebra gr(K[P!) is both well-defined and

respects the grading.
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p-restricted central series

Proposition ([Laz54])

The constructed filtration {K } is an inclusion-minimal Ny-series
containing {K;}i>1.

Notice that for g € K,gp], the element gP € K,g’,;]. Hence, the operation

induced in the p-restricted Lie algebra gr(K[P!) is both well-defined and
respects the grading.

For g = gK +1eK /n+1,wecandeﬁne
glrl = g7 = gPK ) e kI /K]

np+1 € np+1*

We will denote grlP!(G) = gr(y[P1(G)) as the Lie algebra associated with
the p-restricted ~[P!.
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p-restricted Lie algebra

Definition
p-restricted Lie algebra is defined as a Lie algebra L over a field k of
characteristic p with the introduced p-operation x — x[Pl, such that for all
x,y € L:
O [x ¥l =1[xy,....y]
Q (tx)lPl = trxlPl e k
Q (x + y)lPl = xlP] ] 4 Zp 1 i7tsi(x,y), where si(x, y) are formal
coefficients in front of t'~1 in the expression
ady(tx + y)P~! =[x, tx + y, tx + y, ..., tx + y] in the associative Lie
algebra.

.
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p-restricted Lie algebra

Definition
p-restricted Lie algebra is defined as a Lie algebra L over a field k of
characteristic p with the introduced p-operation x — x[Pl, such that for all

x,y € L:
@ [xyPll=[xy,....y]
Q (tx)lPl = tpxlPl t e k
Q (x + y)lPl = xlP] 1 4+ Zp i~1si(x,y), where s;(x,y) are formal

coefficients in front of t'=1in the expression
ady(tx + y)P~! =[x, tx + y, tx + y, ..., tx + y] in the associative Lie

algebra.

.

Theorem ([Laz54])

The Lie algebra associated with the filtration {K } is a p-restricted Lie
algebra.
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On the associated graded ring of a group ring[Qui68]

Let R be a field with charR = p > 0, RG a group ring with augmentation
homomorphism € : RG — R, given as (3, rigi) = >, ri, where r; € R,
gi € G and RG = ker ¢ the corresponding augmentation ideal.
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On the associated graded ring of a group ring[Qui68]

Let R be a field with charR = p > 0, RG a group ring with augmentation
homomorphism ¢ : RG — R, given as (>, rigi) = >, ri, where r; € R,

gi € G and RG = ker ¢ the corresponding augmentation ideal.

The algebra associated with filtration by the augmentation ideal will be
denoted as follows:

gr(RG) = (D(RG)"/(RG)"

n=0
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On the associated graded ring of a group ring[Qui68]

Proposition ([Qui68, Lemma 2.1])

Letw: L1 — Ly bea homomorphEm of_p-Lie aigebras over K. Then, w is
surjective (injective) if and only if Uw : ULy — UL, is surjective (injective).
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On the associated graded ring of a group ring[Qui68]

Proposition ([Qui68, Lemma 2.1])

Letw: L1 — Ly bea homomorpthm of_p-Lie e@febras over K. Then, w is
surjective (injective) if and only if Uw : ULy — UL, is surjective (injective).
<

Theorem ([Qui68, Th. 1], [Pas06, Th. VII1.5.2])

There is an isomorphism of graded algebras over R:

U(grlPl(G) ®z R) — gr(RG).
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Definition

If X is a non-empty set, then the free p-bounded Lie algebra FLIPI(X) is
defined as a p-Lie algebra generated by the set X, such that any mapping
¢ : X — G, where G is a p-Lie algebra, extends to a p-homomorphism
é: FLIPI(X) - G.
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If X is a non-empty set, then the free p-bounded Lie algebra FLIPI(X) is
defined as a p-Lie algebra generated by the set X, such that any mapping
¢ : X — G, where G is a p-Lie algebra, extends to a p-homomorphism

é: FLIPI(X) - G.

Definition

Let K be a graph on the set of vertices K°. Then the p-graph algebra of
Lie algebras is defined as:

L = FUPY (KO i, vi] = 0,40, b e ;. viPh = 0)

]
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Definitions

Definition

If X is a non-empty set, then the free p-bounded Lie algebra FLIPI(X) is
defined as a p-Lie algebra generated by the set X, such that any mapping
¢ : X — G, where G is a p-Lie algebra, extends to a p-homomorphism
é: FLIPI(X) - G.

Definition

| .

Let K be a graph on the set of vertices K°. Then the p-graph algebra of
Lie algebras is defined as:

L = ALV vis vi] = 0,4, j} e K v”) = 0)

]

Proposition

The identity mapping id : K — K° extends to an epimorphism of 2-Lie

algebras eF[fC]K : L,[CZJ — grl2l(RCx).
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The main result

There exists an isomorphism of Lie algebras

gl RCye = (B
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The main result

There exists an isomorphism of Lie algebras

gl RCye = (B

Recalling the motivation behind the study of the lower central series, the
fact that RCc = 71 ((RP®)X), and that for k — a field, we have

T<U1,-~aUm>
(u? =0, ujuj + uju; = 0, {i,j} € K)

H.(Q(CP)*; k) = Extypy(k, k) =

at the level of universal enveloping algebras, we can formulate the following

There exists an isomorphism of associative algebras

Ugr? m (RP®)X)) = H, (Q(CP*)": Z2)

= = = et

18 /22
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Steps of proof

Proposition

ZoRC =~ Tz, (K°)/(vV? = 1,Vi; vivjvivi =1 = {i,j} € K)
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Steps of proof

Proposition

ZoRC =~ Tz, (K°)/(vV? = 1,Vi; vivjvivi =1 = {i,j} € K)

Let the graph KC be defined on the set of vertices [m], and let the
generators of L,[Cz] be {v;} . Then,

U(L,[g]) = Tz, (a0, .-, am)/(a? = 0,Vi; aja; + aja; =0 = {i,j} € K)

Temurbek Rahmatullaev 2-restricted Lie algebras associated with t 19 /22



Steps of proof

Consider two augmented algebras
ZoRCi = Tz,(va, ..., vim)/ (V2 —1=0,Yi; vivjvivj —1=0= {i,j} €K)

U(L,[Cz]) ~ Ty, (a1,...,am)/(a? = 0,Vi; ajaj + aja; = 0 = {i,j} € K).
Augmentations are defined on them as follows:

@ c:7Z>RCx — Zs is defined as € : v; — 1.

Q:: U(L,[g]) — Zy is defined as & : a; — 0.

The mapping i : vi — a; + 1 establishes isomorphisms of augmented
algebras ZyRCyc ~ U(L,[g]).
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Steps of proof

The mapping i : vi — a; + 1 establishes isomorphisms of augmented
algebras ZoRCy ~ U(L,[g]).

Note that the established isomorphism between Z>RCy and the connected
graded algebra U(ng]) gives a grading on Z;RCx. Filtration we get equals
to the filtration given by degrees of augmentation ideal as it is so in

)
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Steps of proof

The mapping i : vi — a; + 1 establishes isomorphisms of augmented
algebras ZoRCy ~ U(L,[g]).

Note that the established isomorphism between Z>RCy and the connected
graded algebra U(ng]) gives a grading on Z;RCx. Filtration we get equals
to the filtration given by degrees of augmentation ideal as it is so in

U(L,[Cz]). Therefore we have:

ZoRCxe = gr(ZoRCx) ( = P(Z2RCx)' /(ZoRC) 1)
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Steps of proof

The mapping i : vi — a; + 1 establishes isomorphisms of augmented
algebras ZoRCy ~ U(L,[g]).

Note that the established isomorphism between Z>RCy and the connected
graded algebra U(ng]) gives a grading on Z;RCx. Filtration we get equals
to the filtration given by degrees of augmentation ideal as it is so in
U(L,[Cz]). Therefore we have:

ZoRCre = gr(ZoRCr) (= P(Z2RCx)'/(Z2RC)'™ )

U(grlP (RCx) ®z Z2) = gr(ZoRCx) = ZoRCx = U(L) )
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The main result

There exists an isomorphism of Lie algebras

gl RCye = (B

Recalling the motivation behind the study of the lower central series, the
fact that RCc = 71 ((RP®)X), and that for k — a field, we have

T<U1,-~aUm>
(u? =0, ujuj + uju; = 0, {i,j} € K)

H.(Q(CP)*; k) = Extypy(k, k) =

at the level of universal enveloping algebras, we can formulate the following

There exists an isomorphism of associative algebras

Ugr? m (RP®)X)) = H, (Q(CP*)": Z2)

= = = et

22/22
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